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Abstract

The literature on panel models has made considerable progress in the
last few decades, integrating non-stationary data both in the time and
spatial domain. However, there remains a gap in the literature that si-
multaneously models non-stationarity and cointegration in both the time
and spatial dimensions. This paper develops Granger representation the-
orems for spatial and spatio-temporal dynamics. In a panel setting, this
provides a way to represent both spatial and temporal equilibria and dy-
namics as error correction models. This requires potentially two different
processes for modelling spatial (or network) dynamics, both of which can
be expressed in terms of spatial weights matrices. The first captures
strong cross-sectional dependence, so that a spatial difference, suitably
defined, is weakly cross-section dependent (granular) but can be non-
stationary. The second is a conventional weights matrix that captures
short-run spatio-temporal dynamics as stationary and granular processes.
In large samples, cross-section averages serve the first purpose and we
propose the mean group, common correlated effects estimator together
with multiple testing of cross-correlations to provide the short-run spatial
weights. We apply this model to house prices in the 375 MSAs of the
US. We show that our approach is useful for capturing both weak and
strong cross-section dependence, and partial adjustment to two long-run
equilibrium relationships in terms of time and space.
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1 Introduction

The first introduction to economics of cointegration and its link to the error
correction models of Phillips (1954, 1957) and Sargan (1964) in the time domain,
was Granger (1981) and Granger and Weiss (1983) and then its formalisation
and some testing procedures provided in Engle and Granger (1987). In the past,
the most common empirical application focusing on spatial adjustments was in
agricultural economics and the equilibrating processes (and the law of one price)
in different markets for products. One of the earliest contributions to use the
error correction approach was Ravallion (1986). He explored market integration
of rice prices in Bangladesh. His approach extracted information on the nature
of spatial price differentials. In particular, the dynamic approach in an ECM
framework makes a clear distinction between short-run market integration, and
integration as a long-run tendency, in the short-run adjustment processes. This
was followed by a substantial literature on dynamic adjustment in agricultural
markets; see, for example, Goodwin and Schroeder (1991), Gordon et al. (2004),
Muwanga and Snyder (1997) and Asche et al. (2004). A more recent contribution
is Kumar and Karak (2022) who used an error correction model to examine
horizontal and vertical integration of wholesale and retail prices of wheat in the
major markets of India. On confirming cointegration between the wholesale and
retail prices of wheat, a vector error correction model was used to determine
the speed of adjustment of wheat prices. The results revealed that price signals
are transmitted across regions, indicating that price changes in one market are
consistently related to price changes in other markets.

In another recent paper, von Cramon-Taubadel and Goodwin (2021) review
recent developments in the analysis of price transmission in agricultural markets.
Separated in time, form, and space (as well as in combinations of such factors)
agricultural markets face transactions and storage costs as well as production
and marketing costs. They argue that much of recent research on spatial mar-
ket linkages has reflected methodological advances that have led to increasingly
nonlinear time-series models. Advances in the theoretical and empirical litera-
ture over the last few decades have established that price relationships in the
food chain are highly context specific. Furthermore, improvements in market-
ing, information, and transportation technologies have strengthened the links
between prices in the food system.

The above literature provides a clear sense of cross-section dynamics in mar-
kets in a way that emphasises equilibrating forces of arbitrage at the spatial level.
However, nonstationarity and error correction in the literature has focused al-
most exclusively on the temporal dimension. Likewise, the related literature
on panel data cointegration and error correction models has considered solely
time series nonstationary dynamics, but applied to many other contexts beyond
agricultural economics; see, for example, Pesaran et al. (1999), Fingleton (1999,
2009) and Beenstock et al. (2012). This marks a clear departure of the current
paper from the literature, in asking how nonstationarity (or nongranularity)
and equilibrium can be understood in a unified spatial context and how such
spatial dynamics can be modeled. Our research builds upon Müller and Watson
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(2023) who represent a distinct view in clarifying the notion of spatial unit roots.
Our contribution takes this approach further by developing spatial and spatio-
temporal Granger representation theorems leading to error correction models
integrating both the spatial and temporal dimensions.

The rest of the paper is organised as follows. Section 2 provides intuitive
and applied context for spatial and spatio-temporal cointegration. Following
this, Section 3 develops Granger representation theorems – first for the spatial
domain and next for spatio-temporal settings. Section 4 provides an application
of the proposed concepts and framework to understand nonstationary spatio-
temporal dynamics in housing markets across MSAs in the USA and over time.
Section 5 concludes.

2 Context: Conceptual empirical illustrations

Müller and Watson (2023) provided a framework to define and study spatial
unit roots. In this short section, we conceptually and intuitively extend this
framework using a couple of empirical application contexts. The applications
themselves are hypothetical yet based upon previous literature, and the objec-
tive is to motivate what we mean by spatial (and spatio-temporal) cointegration
and how error correction models may be useful for modeling spatial dynamics
using cross-section and panel data.

2.1 Urban housing markets: Spatial cointegration

Our first example relates to a simple illustration of spatial nongranularity and
cointegration in an urban housing market. There is remarkable similarity in res-
idential sorting across many cities the world over (but particularly in Europe).
The empirical regularity is that western neighbourhoods of cities are more af-
fluent. A key explanation is that “bad winds blow from the west” (Meen, 2016;
Heblich et al., 2021): predominantly winds come from the west and blow stench
eastwards resulting in residential sorting. Thus, we expect one cluster of higher
prices and larger houses in the west and another of lower sizes and prices in the
east. This would likely result in co-trending of household incomes and better
and more expensive housing.

This situation is conceptually very similar to temporal nonstationarity. One
would therefore expect nongranularity (spatial strong dependence) reflected in a
strong global relationship between prices and incomes. In addition, if there were
a stable spatial equilibrium between the two, any local variation away from this
relationship would generate a partial adjustment moving prices in that locality
back towards equilibrium.

One can easily extend this argument to more clusters or multicentric cities.
Also, this partial adjustment is intrinsically local rather than global (across
the entire city). Then, spatial and temporal dynamics can be coincident and
potentially lead to spatio-temporal ECM along the lines of Bhattacharjee et al.
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(2022). Our developments in this paper formalises this argument in both the
spatial and spatio-temporal contexts.

Beyond the urban scale, similar arguments may hold in larger (regional)
scales as well. This could, for example, partly explain the phenomenon of “ripple
effects” in the UK housing markets (Drake, 1995; Cook and Holly, 2000; Holly et
al., 2011; Meen, 2016), whereby price (and income) shocks often arise in London
and the South East of England and then spread out to other regions. Similar
evidence of price gradients have also been observed elsewhere, not least across
US regions (Chiang and Tsai, 2016). This partly motivates our application (in
Section 4) to US metropolitan housing markets.

2.2 Firm panel data: Spatio-temporal Error Correction

To illustrate the potential for spatio-temporal cointegration and error correction,
we follow Bhattacharjee et al. (2014) and consider the firm-level relationships
between costs and sales. If there were an equilibrium profit margin for each firm,
this would be reflected in a long-run (temporal) relationship between logarithms
of cost and sales, and partial adjustment each period towards this equilibrium.
This would imply a conventional and familiar temporal error correction model
along the lines of Granger (1981), Granger (1983) and (Engle and Granger,
1987).

Now, consider in addition the potential for an equilibrium cross-firm rela-
tionship between costs and sales. This implies that, in equilibrium, costs and
sales of each firm would move in line with each other in a way that their rela-
tive magnitudes remain in balance. Conceptually, this implies network (spatial)
equilibrium market shares (Bhattacharjee et al., 2014). If such an equilibrium
exists, costs and sales of each firm will remain tightly clustered around firm-
specific proportions to total costs and sales within the sector. Whether such
a network equilibrium exists or not is an empirical question, and our spatial
and spatio-temporal Granger representation theorems precisely establishes con-
ditions under which this happens.

If indeed there is such an equilibrium, analogous to temporal cointegration, it
is possible that there is network (spatial) partial adjustment to this equilibrium.
Once again, our theoretical work in the following section establishes precisely the
conditions under which this may happen and the precise form of the resulting
error correction model.

3 Spatial and Spatio-Temporal Engle-Granger
Representation Theorems

First, we present a spatial Granger representation theorem and associated error
correction model. This is followed by discussion of corresponding measures of
spatial weights. Finally, we develop a spatio-temporal Granger representation
theorem and discuss short run spatial dynamics.
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3.1 Spatial Granger Representation and Error Correction
Model

As a reminder, consider first the conventional time series error correction model
as developed by Granger and Weiss (1983), Engle and Granger (1987) and
Johansen (1995), among others.

Theorem 1 (Granger Representation Theorem (Granger and Weiss, 1983)).
Consider two time series variables {yt} and {xt} indexed by discrete time points
t = 0, 1, 2, . . . jointly following a V AR(1) model and admitting only one unit
root. Then the two time series can be represented by an error correction model[

∆ys
∆xs

]
= (1− ρ)

[
b
d

]
[cyt−1 − axt−1] + ηt,

where ∆ is the first differencing operator.

Now, consider the bivariate spatial V AR(1) model:[
ys
xs

]
= Φ

[
Wys
Wxs

]
+ ϵs, (1)

where s ∈ S is a location, Φ a (2×2) matrix representing spatial dynamics, and
ϵs is an error white noise distributed over the spatial domain S. W is a spatial
weights (interaction) matrix operator on S × S with zero diagonal elements.
Hence Wys and Wxs are spatial lags of y and x at location s respectively,
capturing the average of neighbouring values where neighbourhood identity is

represented by W. Correspondingly,

[
∆ys
∆xs

]
denotes the spatial first difference[

ys −Wys
xs −Wxs

]
.

Equation (1) is akin to the conventional and popular spatial autoregressive
(or spatial lag) model (Anselin, 1988; Anselin et al., 1996; Baltagi et al., 1996)
but with one key difference. Unlike traditional spatial econometric models that
allow spatial stationary dynamics, here we do not assume the spatial granular-
ity condition (Pesaran, 2006). Thereby, we enable W to model nonstationary
(nongranular) or strong dependent spatial dynamics. This has important im-
plications for specification of W which we discuss in the following Section 3.2.

Corollary 1.1 (Spatial Granger Representation Theorem). If the spatial pro-
cesess y and x jointly have a single unit root, then they can be represented by
an error correction model[

∆ys
∆xs

]
= (1− λ)

[
β
δ

]
[γWys − αWxs] + ϵs.

Proof. The line of proof follows Granger and Weiss (1983) and Engle and
Granger (1987) closely. The characteristic equation for Φ is:

|Φ− λI| = 0.
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If both roots are unity, we have spurious regression. On the other hand, if both
roots are less than 1 in absolute value, we have spatial stationary (cross section
granular) processes (Müller and Watson, 2023). Our domain is intermediate
with one unit root:

z1 = 1, z2 = λ, λ ̸= 0, |λ| < 1.

Since z1 = 1, both y and x are spatially I(1) a la Müller and Watson (2023).
Since λ ̸= 0, Φ has full rank. Hence, we can write its SVD:

Φ = P

[
1 0
0 λ

]
Q,

where the matrix P =

[
α β
γ δ

]
holds the eigenvectors as columns, with |P| = 1

without loss of generality, and Q = P−1. Then, since

αδ − βγ = 1,

Q = P−1 =

[
δ −β
−γ α

]
.

Putting elements together:

Φ =

[
αδ − λβγ −αβ(1− λ)
γδ(1− λ) −γβ + λαδ

]
.

Simplifying the top left element (adding and subtracting γβ):

αδ − λβγ = αδ − γβ + γβ − λβγ

= 1 + γβ(1− λ).

Likewise, adding and subtracting αδ to the bottom right element

−γβ + λαδ = 1− αδ(1− λ).

Then,

Φ = I+ (1− λ)

[
β
δ

] [
γ −α

]
.

Substituting into Eqn. (1):[
∆ys
∆xs

]
= (1− λ)

[
β
δ

]
[γWys − αWxs] + ϵs,

where ∆(.)s = (I−W)(.)s and [γWys − αWxs] is a measure of the departure
from equilibrium in the neighbourhood of location s.
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This is the spatial error correction model in the tradition of Granger and
Weiss (1983) and Engle and Granger (1987):[

∆ys
∆xs

]
=

[
(1− λ)β
(1− λ)δ

] [
γ −α

] [Wys
Wxs

]
+ ϵs. (2)

Focussing on a single equation, we have:

∆ys = (1− λ)β [γWys − αWxs] + ϵy,s.

The above derivation follows closely that of Engle and Granger (1987). Here

we considered a bivariate spatial process

[
ys
xs

]
which created the potential for

at most one cointegrating vector corresponding to a single unit root. Extending
to a higher dimensional vector of spatial processes, one can follow Johansen
(1995) and consider potential for multiple cointegrating vectors. Conceptually,
this constitutes a simple extension of analogous time series concepts, based on
the above construction of spatial lags and differences. Then, one can also use
this formulation and the framework of Johansen (1995) to test for cointegration
and cointegrating rank. This would require aditional technical treatment which
is retained for future research.

3.2 Choice of spatial weights

So far, we have left W unspecified. Next, we consider the choice of spatial
weights. While short run dynamics will require a granular weights matrix along
the lines of Anselin (1988), among others, modeling spatial long run equilibrium
will require spatial weights with more specific structure, such as the common
correlated effects of Pesaran (2006). First we consider spatial long-run equilib-
rium followed by short run stationary (granular) dynamics.

3.3 Equilibrating long-run W

The choice of W has to do with the nature of the spatial patterns in equilibrium.
Looking towards a time series setting for inspiration, it is common to write an
AR(1) model:

∆yt = β + α∆yt−1 + ϵt.

Then, setting ∆yt+1 = ∆yt = y⋆ in equilibrium, we have

y⋆ =
β

1− α
.

Additional AR or DL terms lead to minor modifications, not any deep concep-
tual issues. The spatial context is similar to the above time series case:

∆ys = β + αW∆ys + ϵs

(ys −Wys) = β + αW (ys −Wys) + ϵs.
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However, there are several key points and distinctions to note. First, given
the spatial weights matrix W, Wys (likewise Wxs) has the interpretation of a
spatial lag, meaning an average of y (respectively, x) values for the neighbouring
locations. Importantly, this leads into a key distinction from the time series case.

Specifically, and second, a shock to ys (analogously xs) diffuses to neighbours
represented by the weights matrix W and then to neighbours of neighbours,
captured by W2, and so on. Thus, while in the time series case, information
(effect of shocks) flow from the past to the present to the future, the natural
way to structurally conceptualise the spatial case is exactly the opposite: from
y to its spatial lag Wy and further to its second order spatial lag W2y, and
so on. Hence, the natural way to seek spatial equilibrium is to go wider into
the network structure – W 2,W 3, . . . and so on – that is to include locations in
higher degrees of separation. This is in line with increasing domain asymptotics.

Third and finally, analogous to the temporal case, adding an additional DL
term (∆x = x − Wx and its spatial lag) is straightforward. However, unlike
time series, adding higher order spatial lags beyond spatial ARDL(1, 1) is not
very instructive. In fact, the term “higher order spatial AR models” means
something very different (Gupta and Robinson, 2015, 2018).

Then, following the reverse information flow discussed above and natural in
this spatial context, we can set Wd+1 (ys −Wys) ≈ Wd (ys −Wys) = ∆y⋆.
Then, in spatial equilibrium, we have:

y⋆ = lim
d→∞

Wd (ys −Wys) =
β

1− α
,

analogous to the time series case apart from the above distinction. It is also
natural to expect that limd↑∞W d covers every location in the entire spatial
domain. This is barring the possibility of disjoint markets, or several different
equilibria in different regions, which can emerge in the case of multi-centric
cities or disjoint social networks.

Note further that, the above setting allows spatial variation in the offset of
ys at location s from its neighbours Wys. For example, the metropolitan area
of Manhattan can have a different premium relative to its neighbourhood, as
compared with downtown Miami, for example. This premium can potentially
converge to a stable location-specific value in the long run. But this is a question
for temporal equilibrium, to which we return later in a panel context.

The standard connected case implies that W is such that every pair of
locations is connected, potentially across multiple degrees of separation. This
would hold automatically if W represents a weighted average of all locations,
which is the central common correlated effects case conventionally used to model
strong dependence (Pesaran, 2006). In this common correlated effects case,

W =
1

n
1 1′ ≈ 1

n− 1
[1 1′ − I] .

Clearly, the above social network type weights matrix W induces a connected
network, but is also idempotent, such that suitably normalised W = W2 =
W3 = . . ..
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3.3.1 Spatial short run dynamics

One can add stationary higher order ∆ terms in y and x to ensure white noise
errors ϵs. However, while including a single spatial-differenced term is natural,
as discussed above, there is no apparent intuitive interpretation of higher order
DL terms. In particular, the ARDL(1,0) specification is common in time series
which, translated into the spatial context, implies adding to Equation (1) one
additional spatial distributed lag term:

SDL(0) :

[
0 θ1
θ2 0

] [
ys
xs

]
.

Then, we obtain the familiar ECM form which can be written in this spatial
context as:

∆ys = β0 + β1∆xs + (1− λ)βγ

[
Wys −

α

(1− λ)βγ
Wxs

]
+ ϵy,s,

where β1 represents the short-run dynamic adjustment and −(1 − λ)βγ the

partial adjustment to the spatial equilibrium relationship
[
ys − α

(1−λ)βγxs

]
.

Note that, the above spatial DL term is additional to the core ECM in
Corollary 1.1 (and similarly Theorem 2). Hence, while there is a well-defined
common correlated effects choice for the long run equilibrating spatial weights
matrix W, there is more freedom in the choice of spatial weights for the short
run dynamics. We return to a discussion of this choice in Section 3.4 in the
context of the spatio-temporal error correction model.

3.4 Spatio-Temporal Granger Representation and Large
Panels

Now, let us consider panel data:

zit =
(
yit xit

)′
i = 1, . . . , n; t = 1, . . . T

zt =
(

yt xt

)′
(n×2)

.

Consider the spatio-temporal stochastic process with first order autoregressive
dynamics in both dimensions:

zit =Φwizt + ϵit

zi,t−1 =Φwizt−1 + ϵi,t−1

zit =Ωzi,t−1 + ηit

wizt =Ωwizt−1 +wiηt,

where ηt =
(
η1t η2t . . . ηnt

)′
, wi is the i-th row of a n × n spatial

weights matrix W , and the errors ϵit and ηit are idiosyncratic and independent
white noise processes.
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Theorem 2 (Spatio-Temporal Granger Representation Theorem). Assume that
z is cointegrated along both the spatial dimension (as discussed before) and the
conventional temporal dimension. Then, the twice differenced process

∆∆z ≡ ∆∆z

admits an error correction representation with: (a) potential partial adjustment
to two equilibrium relationships – a spatial equilibrium and a temporal equilib-
rium; and (b) potential strong dependence modeled by common correlated effects.

Proof. Spatial cointegration implies that Φ has one (unit) root lying on the unit
circle and another root within the circle. Then, as shown above:

Φ = I+ (1− λ)

[
β
δ

] [
γ −α

]
.

Likewise, following Granger and Weiss (1983) and Engle and Granger (1987):

Ω = I+ (1− ρ)

[
b
d

] [
c −a

]
.

Then,

∆zit =(Φ− I)wizt + ϵit

∆∆zit =(Φ− I)∆wizt +∆ϵit

=(Φ− I) [(Ω− I)wizt−1 +wiηt] + ∆ϵit

=(Φ− I)(Ω− I)wizt−1 + [(Φ− I)wiηt +∆ϵit]

= [(Φ− I)Ωwizt−1 + (Φ− I)wiηt]

+ [(Ω− I)Φwizt−1 + (Ω− I)ϵi,t−1]

+ (ΩΦ− I)wizt−1

+ [(Φ− I)wiηt +∆ϵit − (Φ− I)wiηt − (Ω− I)ϵi,t−1]

=(Φ− I)wizt + (Ω− I)zi,t−1 + (ΩΦ− I)wizt−1

+ [ϵit −Ωϵi,t−1]

=(1− λ)

[
β
δ

] [
γ −α

] [wiyt

wixt

]
+ (1− ρ)

[
b
d

] [
c −a

] [yi,t−1

xi,t−1

]
+ (ΩΦ− I)wizt−1 + [ϵit −Ωϵi,t−1] ,

where the first term represents partial adjustment to the spatial equilibrium, the
second is the conventional Engle-Granger partial adjustment to the temporal
equilibrium and the third term has spatial strong dependence interpretation;
see also Bhattacharjee et al. (2022).

Two important implications follow. First, in large panels the third term
(ΩΦ − I)wizt−1 has a spatial strong dependence interpretation (Bhattachar-
jee et al., 2022). Hence, a natural choice for the long-run weights matrix W
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is a cross-section weighted average. Its validity and adequacy is underlined
by Pesaran (2006), for example, with the popular choice being the common
correlated effects. Further, this term also has another interpretation as cap-
turing the interaction between space and time dynamics. To see this, consider
again spatial cointegration in the previous section. Together unit root and or-
thonormalisation placed two constraints on the elements of Φ, leaving two free
parameters which are then linked to the long run spatial equilibrium relation-
ship and partial adjustment to it. Likewise, the four elements of Ω are fixed
by one unit root, orthonormality, long run temporal equilibrium and partial
adjustment to this equilibrium (Granger and Weiss, 1983). Our model puts the
two together, so here we have elements of a (4 × 4) matrix Φ ⊗ πΩ, where π
measures the interaction contribution of temporal dynamics relative to spatial
dynamics (normalised to unity). This parameter π leads to the third term ad-
ditional to one-dimensional space or time dynamics. Hence, the third term can
also be interpreted as measuring the strength of space-time interactions.

Second, in line with the time series literature, additional distributed lag
terms in both x and y can be added to enrich short run dynamics and aid
modelling and interpretation. This provides additional flexibility in modelling
short run dynamics. Effectively, the weights matrix has two roles here: (a) to

model the long run spatial equilibrium
[
γ −α

] [wiyt

wixt

]
; and (b) to model short

run dynamics as in ∆∆yit and ∆∆xit. While, as discussed above, the first role
lends itself naturally to the choice of cross-section averages, the weights matrix
representing the short-run dynamics in additional distributed lag terms can, and
in principle, should be different from the above long-run W. This is because it
is used to model the stationary dynamics, and its specification can be based on
theory, alternate heuristics or even spatial weights estimated from the data.

To see this more clearly, consider a potentially alternate choice W0. Then,

∆∆yit =∆yit −wi∆yt

= [∆yit −w0i∆yt]−wi∆yt +w0i∆yt

The first term is the double difference based on the alternate short run dynamics
weights matrix W0, the second term is encompassed in the above common
correlated effects term (plus error), and hence the only new component is the
third term. However, note that because of partial adjustment to the spatial
equilibrium,

w0i∆yt =
α

γ
w0i∆xt + error terms.

Hence, all this requires is adding a spatial distributed lag in x on the right
hand side. This implies a free choice for W0. For example, along the lines of
Bhattacharjee et al. (2022), the cross-section correlation weights (Bailey et al.,
2016) can be used here.

This suggests an empirical model of the following form:

∆∆yi,t = βi,0 + βi,1∆∆xi,t − ϕi (yi,t−1 − κixi,t−1)

− λi (wiyt − γiwixt) + ψi,1wiyt−1 + ψi,2wixt−1 + ei,t, (3)
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where wi denotes the i-th row of the common correlated effects or some other
strong dependence weights matrix W representing the factor structure, while[
∆yit
∆xit

]
=

[
yit −w0iyt

xit −w0ixt

]
with w0i denoting the i-th row of a weak dependence

W 0 that can be chosen freely, for example from the first stage where Ŵ 0 is ob-
tained from multiple testing of residual cross-correlation. An alternative would
be to obtain it from geographical spatial weight matrices such as those based
on neighbours (contiguity) or distances.

To equation (3), we add and substract λi
(
wiyt−1 − γiwixt−1

)
and

ϕi
(
wiyt−1 − κiwixt−1

)
. Since both terms can be expressed as linear combina-

tions of wiyt−1 and wixt−1, we obtain the equivalent one-way differenced ECM
similar to Bhattacharjee et al. (2022):

∆∆yi,t = βi,0 + βi,1∆∆xi,t − ϕi
{(
yi,t−1 −wiyt−1

)
− κi (xi,t−1 −wixt−1)

}
− λi (wi∆yt − γiwi∆xt) + ψ⋆

i,1wiyt−1 + ψ⋆
i,2wixt−1 + e⋆i,t. (4)

Note that, equations (3) and (4) are not different models, but alternate
representations of the same spatio-temporal ECM. Obviously the two equations
have different error terms and their stochastic behaviour will be different. Which
of these is more useful for estimation and inference depends on weak/strong
dependence and stationarity/nonstationarity of the error terms, and is therefore
largely an empirical question. This is one of the issues on which we place special
emphasis in our empirical application.

For the remainder we differentiate between short and long run spatial dynam-
ics. The spatial weights are defined as wi,kyi,t, where k = [S,L] with S repre-
senting short run and L long run spatial weights. Hence, the spatial lag for vari-
able yi,t is thenwi,kyi,t while the spatial first difference is ∆kyi,t = yi,t−wi,kyi,t,
where k = [S,L].

In terms of spatial weight matrices we consider four options. First, (a) ŵi are
the cross-correlations obtained from the multiple testing and will be discussed
in the next section. Further, we define (b) wi,CSA = wCSA = 1/N(1′1 − IN )
as the cross-sectional averages, with 1 a Nx1 vector of ones. Note, wCSAyt ≈
1
N

∑N
j=1 yj,t. Finally, two geographical weight matrices are considered: a (c)

contiguity (wi,c; ∆c) and a (d) distance (wi,d; ∆d) based weighting matrix.
Then, Equations (3) and (4) can be specified as:

∆∆Syi,t =βi,0 + βi,1∆∆Sxi,t

− ϕi (yi,t−1 − κixi,t−1)− λi (wi,Lyt − γiwi,Lxt) (5)

+ ψi,1wi,Syt−1 + ψi,2wi,Sxt−1 + ei,t

∆∆Syi,t =βi,0 + βi,1∆∆Sxi,t

− ϕi (∆Lyi,t−1 − κi∆Lxi,t−1)− λi (wi,L∆yt − γiwi,L∆xt) (6)

+ ψ⋆
i,1wi,Syt−1 + ψ⋆

i,2wi,Sxt−1 + e⋆i,t.
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4 An application – US MSA level house prices

Like regions in the UK and elsewhere around the globe, there is also evidence
of “ripple effects” in house prices across US regions (Chiang and Tsai, 2016).
We apply our approach to the modelling of US house prices1 at the level of
the Metropolitan Statistical Area (MSA).2 The sample period is quarterly data
from 1975q1 to 2021q4. We use data on 375 MSAs, excluding three that are
located in Alaska and Hawaii.

For the error correction model, we use house prices deflated by the consumer
price index at the MSA level, dependent on real per capita personal income at
the MSA level. We use a version of the panel dataset employed by Bailey et
al. (2016) and Aquaro et al. (2021), but extended up to 2021q4. This was
further augmented with population and per capita real income data by Yang
(2021). In case of spatial weights for the short term dynamics obtained from
cross-correlation ŵi we carry out estimation using the following steps:

1. Estimate a cross-section averages augmented ECM panel model to obtain
the cross-correlations:

∆yi,t =βi,0 + βi,1yi,t−1 + βi,2∆xi,t + βi,3xi,t−1

+

px∑
l=0

γx,i,lx̄t−l +

py∑
l=0

γy,i,lȳt−l + ϵi,t

2. Obtain the cross-correlation matrix from the residuals ρi,j =
1
N

∑T
t=1 ϵ̂i,tϵ̂j,t:

W̃ =


ρ̂1,1 ρ̂1,2 . . . ρ̂1,N
ρ̂2,1 ρ̂2,2 . . . ρ̂2,N
...

. . .
...

ρ̂N,1 . . . . . . ρ̂N,N


3. Use multiple testing (Bailey et al., 2016, 2019) to obtain significant cross-

correlations with ρi,j > cp = ϕ−1
(
1− p/2

nδ

)
which then gives Ŵ .3 Row

standardize Ŵ .

4. Calculate spatial lags as
∑N

s=1 ŵi,syi,t and
∑N

s=1 ŵi,sxi,t.

1For some other approaches see Holly et al. (2010) and Holly et al. (2011).
2Metropolitan statistical areas are delineated by the U.S. Office of Management and Budget

(OMB) and usually consist of a core city with a large population and its surrounding region,
which may include several adjacent counties. The area defined by the MSA is typically
marked by significant social and economic interaction. People living in outlying rural areas,
for example, may commute considerable distances to work, shop, or attend social activities in
the urban center.

3In application contexts, δ is not known a priori, so we need to admit some uncertainty. For
our baseline specification we set δ = 0.7, the nominal size of the test is set to p = 0.05 and ϕ−1

is the inverse of the cumulative distribution of a standard normal variable. Interpretation of
results are robust to varying δ = [0.5, 1, 2, 4]; please see Appendix for these additional results.
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5. Calculate spatio (-temporal) first differences as ∆∆yi,t = yi,t − yi,t−1 −
wiyt + ŵiyt−1, ∆yi,t = yi,t − ŵiyt and same for ∆∆xi,t and ∆xi,t.

6. Estimate the following models based on Equations (3) and (4):

∆∆Syi,t =βi,0 + βi,1∆∆Sxi,t

− ϕi (yi,t−1 − κixi,t−1)− λi (wi,Lyt − γiwi,Lxt)

+ ψi,1wi,Syt−1 + ψi,2wi,Sxt−1 + ei,t

∆∆Syi,t =βi,0 + βi,1∆∆Sxi,t

− ϕi (∆Lyi,t−1 − κi∆Lxi,t−1)− λi (wi,L∆yt − γiwi,L∆xt)

+ ψ⋆
i,1wi,Syt−1 + ψ⋆

i,2wi,Sxt−1 + e⋆i,t

where wi,S = ŵi and wi,L = ŵCSA. Further cross-sectional averages can
be added to both regressions.

Alternatively we set wi,S = ŵi,c for the contiguity based spatial weight
matrix or wi,S = ŵi,d for a distance based weight matrix. In this case the short
run spatial weight matrix is known, no multiple testing is needed and hence
only steps (4) - (6) are required.

Implicit in what we are doing is to provide a temporal and spatial cointe-
grating relationship between real house prices and real per capita incomes at
the MSA level. Although we do not provide any formal proofs of cointegration,
we adopt the DOLS approach of Banerjee et al. (1986) and Stock and Watson
(1993) where a statistically significant λ is a measure of temporal cointegration
and a statistically significant ϕ a measure of spatial cointegration.

The results are reported in Table 1. The first 3 columns provide the current
best practice estimates of a temporal error correction model with common cor-
related effects for panel data. The results, however, are quite mixed with the
estimate of the long relationship (κ) between real house prices and real incomes
varying considerably, ranging between 0.043 and 0.889, depending upon the
number of lags used. Weak cross sectional dependence of residuals is rejected
at the 5% level except for column 1. However, the error correction model in
column 1 produces counterintuitive findings with respect to temporal cointegra-
tion. Overall these findings are not satisfactory, reflecting large heterogeneity
across MSAs in the USA, with the implication that we are likely to find better
insights on equilibrium, cointegration and partial adjustment in our spatial and
spatio-temporal models. Columns 4 and 5 provide estimates for a spatial error
correction model on its own. These results are also unsatisfactory. This reflects
yet again the potential of the model developed here, modelling jointly potential
cointegration at both the temporal and spatial dimensions.

Finally, in columns 6 to 9 we report estimates of the spatial and temporal
error correction models together. The lags are either 0 or 3 and the weight-
ing matrices (ŵ) from the spatial weights or 1/N the cross sectional averages.
Further, house prices and incomes are cointegrated only spatially but not tem-
porarily. This is in sharp contrast with housing markets in the UK, where
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Bhattacharjee et al. (2022) found evidence of cointegration across both the spa-
tial and temporal dimensions. A key observation is that there is very large
heterogeneity across MSAs in the unit-specific estimates of the temporal long
run coefficient, such that the standard error of the mean group estimator is very
large. The estimated value of λ suggests that at the spatial level the response
of immediate neighbours to a shock to a MSA is very close to unity, suggesting
that arbitrage opportunities are negated strongly in housing markets. This is in
line with the law of one price intuition provided by the agricultural economics
literature discussed earlier. By contrast the results for the UK suggest a much
more integrated domain. It would take 78 UKs to match the size of the US. The
sheer vastness of the US continent suggests that it is better to think of spatial
equilibrium in house prices but not necessarily at the temporal dimension.

Some support for “ripple effects” is found in the observation of strong cross
section dependence and spatial cointegration. Indeed, detailed MSA-level anal-
ysis reflects higher correlation in incomes in California with cross-section av-
erage incomes across all MSAs, but the same is not observed for house prices.
This indicates that house price shocks are more likely to originate in more
affluent MSAs in California and spread across the country. Likewise, in the
construction of our cross-correlation spatial weights, we find strongest correla-
tions between affluent MSAs in California and Florida, which is in line with
intuition. Finally, the cross-correlation spatial weights are located in only 3.5%
or all cross-correlations, which also highlights the strength of the methods em-
ployed. Overall, spatial nonstationary and stationary dynamics are very rich
and support the theory and model development in this paper.

In Table 2 we also explore whether a distance measure of contiguity4 provides
a better way to model spatial closeness. Although the results are similar to Table
1, the null of weak dependence is rejected in all cases. As discussed, robustness
with regard to choice of δ is reported as additional results in the Appendix.

5 Conclusion

Unit roots, cointegration and error correction are well-understood and useful
concepts in temporal stochastic processes. However, equivalent concepts and
methods for spatial and network contexts are generally lacking, even if there
are some developments on spatial unit roots and strong dependence. Our first
contribution is to develop a spatial Granger representation theorem, together
with an error correction model, to precisely locate potential for cointegration in
spatial processes.

Second, we consider panel data and develop Granger representation and er-
ror correction across two dimensions: space and time. This provides a way
to simultaneously model spatial and temporal processes in a panel framework
as a joint error correction mechanism. Idiosyncratic shocks to a spatial unit
are weakly translated into shocks to neighbours while a factor-driven shock is

4Using longitude and latitude for each MSA we calculate distances using a variant of the
haversine formula of Vincenty (1975) programmed by Austin Nichols in Stata.
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strongly transmitted across the spatial domain or network. This provides the
potential for two error correction mechanisms – one temporal and one spatial –
with partial adjustment towards potentially two different long run equilibrium
relationships. Short run dynamics can be modelled similar to time series con-
texts. We find that there is a key distinction between spatial spillover processes
in weak and strong dependence. While strong dependence spatial weights can
be captured by cross-sectional averages (or common correlated effects), the an-
alyst can make a choice of spatial weights to model short run stationary (weak
dependence) dynamics.

Third, applying our framework and spatio-temporal error correction models
to panel data on housing markets across metropolitan areas of the USA, but we
find little evidence of equilibria and cointegration across both dimensions. The
sheer size of the US suggests that integration of housing markets may only be a
local, spatial feature of the data. Our work suggests substantial further avenues
for theory, model development and applications.
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A Appendix

In this section we present results where we allowed δ to vary during the multiple
testing approach when obtaining significant cross-correlations using ρi,j > cp =

ϕ−1
(
1− p/2

nδ

)
. δ is varied between δ = [0.5, 1, 2, 4]. Tables A1 and A2 present

the results. We also report the share of non-zero elements in Ŵ . We note that
an increase in δ increases the sparsity in Ŵ , implying a lower percentage of
non-zero elements. We further note that the estimate for β and γ also decreases
in size for the Spatial ECMs (Column 2,3, respectively 7 and 8). Results for the
spatial temporal error correction models (Columns 4,5, respectively 9 and 10)
are less affected.
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ŵ
i

ŵ
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