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Abstract

This paper introduces conformal inference, a powerful and flexible framework for
constructing prediction intervals with guaranteed coverage in finite samples. Unlike
conventional methods, conformal inference makes no assumptions about the underlying
data distribution other than exchangeability. The paper begins with some simple examples
of full and split conformal prediction that highlight the key assumption of exchangeability.
We then provide more formal treatments of full and split conformal prediction along with
extensions of the basic framework, including the Jackknife+ and CV+ algorithms, both of
which offer a better balance between computational and statistical efficiency compared to
full and split conformal prediction. The paper then discusses the limitations to achieving
exact conditional coverage and several methods that aim to improve conditional coverage
in practice. The final section briefly discusses areas of current research the software
options for implementing conformal methods.

*Invited paper for the Eighth International Econometric Conference of Vietnam, ‘Artificial Intelligence and
Machine Learning in Econometrics’, Ho-Chi-Minh City, Vietnam, 13-15 January 2025. All errors are our own.



1. Introduction

This paper introduces conformal inference, a powerful and flexible framework for constructing
prediction intervals with guaranteed coverage in finite samples. Unlike conventional methods,
conformal inference makes no assumptions about the underlying data distribution other than
exchangeability, a weaker condition than i.i.d. (independent and identically distributed). This
distribution-free nature, coupled with its finite-sample validity, makes conformal inference a
potentially attractive tool for empirical research in economics.

The idea behind conformal prediction is to assess the “nonconformity” of a new observation
relative to a set of observed data. By comparing the nonconformity of a potential outcome to
the nonconformity of the observed data, we can construct prediction intervals that contain the
true outcome with a specified probability. This is achieved without imposing any parametric
or regularity assumptions on the data generating process or requiring the underlying predictive
model to be correctly specified.

The ideas behind conformal prediction originate in work starting in the late 1990s by computer
scientists Vladimir Vovk, Alexander Gammerman and Vladimir Vapnik (see, e.g. Volodya
Vovk, Alexander Gammerman, and Saunders (1999)). Interest picked up in the 2010s, largely
by academics in the statistics community, and in the past 5+ years the number of papers and
developments has exploded. Econometricians and applied economists are now also among
the academics working in this area.

But despite its theoretical appeal and empirical success in other fields, conformal inference
remains relatively unknown and underutilised in economics. This paper aims to bridge
this gap by providing an introduction to conformal inference tailored to an economics and
econometrics audience. We limit our attention to prediction of a continuous outcome𝑌 , mostly
for reasons of space; conformal prediction methods for categorical variables are also available
and use the same principles.

The paper begins in Section 2 by illustrating the basic principles of full and split conformal
prediction through simple examples, highlighting the key assumption of exchangeability and
demonstrating how to construct one-sided and two-sided prediction intervals. We then provide
a more formal treatment of the methodology in Section 3, where we introduce the concept
of conformity scores and discuss the theoretical guarantees of both full and split conformal
inference.

In Section 4 we explore extensions of the basic framework, including the Jackknife+ and
CV+ algorithms, both of which offer a better balance between computational and statistical
efficiency compared to full and split conformal prediction. We then discuss the issue of
conditional coverage in Section 5, where we discuss the limitations of achieving exact
conditional coverage and where we introduce four methods that aim to improve conditional
coverage in practice.

Finally, in Section 6, we briefly discuss the various directions current research is exploring,
and the software options for implementing these methods.
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2. Conformal prediction: Some simple examples

In this section we illustrate, using the simplest possible data setup, how the two basic variants
of conformal prediction work: “full conformal prediction” and “split conformal prediction”.
Both methods provide guaranteed marginal coverage in finite samples with no assumptions
about the distribution of the data other than exchangeability and a stable data generating
process (DGP). The methods can be applied to prediction with any learner or ensemble of
learners 𝑓 (.), with any number of predictors 𝑋 , and using any measure of “conformity”, i.e.,
how close the prediction �̂�𝑛+1 is to the actual outcome 𝑌𝑛+1.

The key assumption, and the key to the intuition behind how conformal inference works, is
exchangeability. Exchangeability requires that the joint distribution of our data {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1 is
invariant to any permutation – any reordering – of the data. For example, for three observations
𝑌1,𝑌2,𝑌3, exchangeability implies 𝑃𝑟 (𝑌1,𝑌2,𝑌3) = 𝑃𝑟 (𝑌2,𝑌1,𝑌3) = 𝑃𝑟 (𝑌3,𝑌1,𝑌2), ... and so on.

Exchangeability rarely shows up in basic econometrics textbooks, but in fact our students
are exposed to it via different terminology when we teach panel data methods. In the basic
error components model, the composite error is 𝜀𝑖𝑡 = 𝜂𝑖 + 𝜈𝑖𝑡 , where 𝜂𝑖 is a time-invariant
component specific to panel unit 𝑖 and 𝜈𝑖𝑡 is i.i.d. This is an exchangeable error structure: 𝜀𝑖𝑡
exhibits dependence within panels via the component 𝜂𝑖, but this dependence is invariant to
reordering of the observations within the panel unit because 𝜂𝑖 is time-invariant.

All i.i.d. sequences are exchangeable, but as the panel data example illustrates, not all
exchangeable sequences are i.i.d. Sampling without replacement is another example of an
exchangeable sequence that is not i.i.d. (after drawing 𝑛−1 samples, we know what the last
one will be). Note that if a sequence {𝑋𝑖} is exchangeable and 𝑔(.) is any measurable function,
then the set of 𝑍𝑖 generated by 𝑍𝑖 = 𝑔(𝑋𝑖) is exchangeable1. We will make use of this fact
below when constructing predictions, residuals, conformal scores, etc.

It is important to emphasize that this means the basic setup for conformal inference can’t be
used for time series or other structured data without modification. How to accommodate these
types of data is an area of current research; more on this later.

The key intuition behind the conformal inference method is to treat the data symmetrically,
i.e., in a way that respects exchangeability.

We begin by illustrating how full conformal inference works, and then turn to the more
commonly-used split conformal method. We use the simplest possible setting: a small dataset
{𝑌𝑖}10

𝑖=1 of only 10 observations on an outcome 𝑌𝑖, and no predictors 𝑋𝑖. The observations are
drawn from a standard normal distribution with mean 100 and standard deviation 10 (but of
course the researcher doesn’t know this). Our learner – our prediction function 𝑓 (.) – will be
the sample mean function 𝜇(.). Training our learner amounts to calculating the sample mean
𝜇 over a set of values. The error level is 𝛼 and we want to construct intervals with guaranteed

1If we permute the indices of the 𝑍𝑖’s, it’s equivalent to permuting the indices of the corresponding 𝑋𝑖’s
before applying the function 𝑔. Because the 𝑋𝑖 sequence is exchangeable, this permutation doesn’t change the
joint distribution, and thus the transformed sequence {𝑍𝑖} remains exchangeable.
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coverage at least 1−𝛼.2

2.1. Full conformal example: one-sided prediction interval

In the first example, we will construct a one-sided prediction interval for 𝛼 = 0.5, i.e., with a
minimum 50% coverage guarantee. Our nonconformity measure is just the residual 𝑅𝑖 =𝑌𝑖−𝜇.
A large value of the residual 𝑅𝑖 means low conformity with the data, and a low value means
high conformity. We are constructing a one-sided prediction interval, so for very low values
of 𝑌𝑖, the residual 𝑅𝑖 will be very negative, implying that observation is highly conformal; a
large 𝑌𝑖 and a very positive 𝑅𝑖 means that observation is highly nonconformal.

In full conformal prediction, we construct the prediction interval using our dataset and a grid
of “trial values”. We consider whether each trial value 𝑦𝑡𝑟𝑖𝑎𝑙 is included in, or excluded from,
the prediction interval. For expositional clarity only our trial values will be integers.

The full conformal algorithm is as follows.

For each 𝑦𝑡𝑟𝑖𝑎𝑙 ∈ Trial-Grid:

Step 1: Append the trial value to the sample: 𝐷𝑡𝑟𝑖𝑎𝑙 = {𝑌𝑖}10
𝑖=1

⋃ {𝑦𝑡𝑟𝑖𝑎𝑙}.
Step 2: Calculate the mean of the augmented sample 𝜇𝑡𝑟𝑖𝑎𝑙 = 𝑚𝑒𝑎𝑛(𝐷𝑡𝑟𝑖𝑎𝑙).

Step 3: Calculate the conformity score for each observation in the dataset 𝑅𝑖 = 𝑌𝑖 − 𝜇𝑡𝑟𝑖𝑎𝑙 , 𝑖 = 1, ...,10.

Step 4: Calculate the rank of the conformity score for the new observation 𝑅𝑎𝑛𝑘 (𝑅𝑡𝑟𝑖𝑎𝑙) =
∑𝑛+1
𝑖=1 1[𝑅𝑖 ≤

𝑅𝑡𝑟𝑖𝑎𝑙] where here 𝑛+1 = 11.

Step 5: Include 𝑦𝑡𝑟𝑖𝑎𝑙 in the prediction interval if 𝑅𝑎𝑛𝑘 (𝑅𝑡𝑟𝑖𝑎𝑙) ≤ ⌈(1−𝛼) × (𝑛+1)⌉.

And since we are constructing a one-sided interval, the conformity score 𝑅𝑖 in Step 3 is the
residual 𝑅𝑖 = 𝑌𝑖 − 𝜇𝑡𝑟𝑖𝑎𝑙 , 𝑖 = 1, ...,10.

Note that in this example, (1− 𝛼) × (𝑛 + 1) = 0.5× 11 = 5.5, so we need to use the ceil-
ing function ⌈.⌉ to round up to 6 before comparing to the rank of the trial value residual
𝑅𝑎𝑛𝑘 (𝑅𝑡𝑟𝑖𝑎𝑙).
We use {93, ...,107} as our grid of trial values. This grid is almost entirely arbitrary – 𝑦𝑡𝑟𝑖𝑎𝑙
need only be in the domain of 𝑌 – and is chosen only for expositional clarity: if we wished,
we could instead concentrate our search near certain values, we could use non-integer trial
values, etc. This flexibility is a key difference between the full and split conformal approaches,
as we shall see later.

The example is presented in Table 1.
2The inequality in the coverage guarantee is a weak inequality because of the possibility of ties. If the dataset

is drawn from a continuous distribution and therefore there are almost surely no ties, then the coverage guarantee
can be sharpened to a strict inequality and applies almost surely. There are other methods for dealing with ties.
But for simplicity of exposition here we just use a weak inequality in the coverage guarantee.
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Consider the first trial value in in the grid, 𝑦𝑡𝑟𝑖𝑎𝑙 = 93. The mean of the augmented sample –
the dataset of 10 values plus the trial value 93 – is 𝜇𝑡𝑟𝑖𝑎𝑙 = 98.21. In the left-hand panel, we
have the observed residuals 𝑅𝑖 and their rank, from small to large. In the right-hand panel,
we repeat the observed residuals in ascending order, i.e., the values of the empirical quantile
function 𝑞 for the residuals from smallest to largest.

As noted above, the choice of 𝛼 = 0.5 means we should be looking at the quantile given
in column ⌈(1−𝛼) × (𝑛 + 1)⌉ = 6. The 6th-largest residual is 2.94, corresponding to 𝑖 = 2
(𝑅2 = 𝑌2 − 𝜇𝑡𝑟𝑖𝑎𝑙 = 101.15− 98.21 = 2.94). Since 𝑅𝑡𝑟𝑖𝑎𝑙 = 𝑦𝑡𝑟𝑖𝑎𝑙 − 𝜇𝑡𝑟𝑖𝑎𝑙 = 93− 98.21 = −5.21
which is smaller than 2.94, the trial value 93 is inside our prediction interval.

We repeat for the next trial value, 94. We need to re-train our learner using the data plus the new
trial value, which in this simple example means recalculating the mean. Now the augmented
sample mean is 𝜇𝑡𝑟𝑖𝑎𝑙 = 98.30, and the 6th-largest residual is 2.85, again corresponding to the
𝑖 = 2 observation in the actual data. The trial residual is now −4.30, which is again smaller
than the 6th-largest residual, and so the trial value 94 is inside the prediction interval.

This continues through trial value 101; all the trial values 93, ...,101 are inside our prediction
set. Now consider trial value 𝑦𝑡𝑟𝑖𝑎𝑙 = 102. The augmented sample mean is 𝜇𝑡𝑟𝑖𝑎𝑙 = 99.02, and
the 6th-largest residual is 2.12. The trial residual 𝑅𝑡𝑟𝑖𝑎𝑙 = 𝑦𝑡𝑟𝑖𝑎𝑙 − 𝜇𝑡𝑟𝑖𝑎𝑙 = 102−99.02 = 2.98 >
2.12. Since the trial residual is greater than the 6th-largest residual for the actual data, this
trial value is not in our prediction set.

The same calculation applies to trial values 103, ...,107; all of these trial values turn out to lie
outside our prediction set. Hence our final prediction set is 𝑌 ≤ 101. This prediction set has a
1−𝛼 = 50% coverage guarantee: assuming the next actual observation 𝑌𝑛+1 is drawn from the
same distribution as the original dataset, the probability that the next observation 𝑌𝑛+1 ≤ 101
is at least 50%.3

The reason this works is because at every stage we have treated the data, including the trial
values, symmetrically, i.e., we have respected exchangeability. When we considered the
first trial value, 93, we retrained our learner (i.e., we recalculated the sample mean) on the
augmented dataset including the trial value; the trial value was treated as no different from
the actual observations in the dataset. Since our learner (the sample mean function) is a
symmetric function of the training data, all 11 residuals are exchangeable. That is, the rank of
the conformity score for the trial observation is equally likely to be any of the 11 possible
positions.

Since the residuals {𝑅1, ..., 𝑅10, 𝑅𝑡𝑟𝑖𝑎𝑙} are exchangeable, the rank of 𝑅𝑡𝑟𝑖𝑎𝑙 is uniformly
distributed over {𝑅1, ..., 𝑅10, 𝑅𝑡𝑟𝑖𝑎𝑙}. This means that the probability that 𝑅𝑡𝑟𝑖𝑎𝑙 is among
the ⌈(1−𝛼) × (𝑛+1)⌉ = 6 smallest of {𝑅1, ..., 𝑅10, 𝑅𝑡𝑟𝑖𝑎𝑙} is at least 1−𝛼 = 50%. And since
𝑅𝑡𝑟𝑖𝑎𝑙can never be larger than itself, this in turn means the probability that 𝑅𝑡𝑟𝑖𝑎𝑙 is among
the ⌈(1−𝛼) × (𝑛+1)⌉ = 6 smallest of {𝑅1, ..., 𝑅10} is also at least 1−𝛼 = 50%. And given the
dataset {𝑌𝑖}10

𝑖=1, the residuals {𝑅1, ..., 𝑅10, 𝑅𝑡𝑟𝑖𝑎𝑙} can be calculated for any trial value 𝑌𝑡𝑟𝑖𝑎𝑙 as

3As noted above, if we, e.g., rule out ties almost surely, the coverage guarantee can be sharpened to
𝑌𝑛+1 < 101.
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long as we re-train our learner (we recalculate the augmented sample mean), treating all the
points in the augmented data 𝐷𝑡𝑟𝑖𝑎𝑙 symmetrically.

2.2. Full conformal example: two-sided prediction interval

The construction of two-sided full conformal prediction intervals is very similar to the above.
The only difference is that we have to change the nonconformity measure so that very small,
as well as very large, residuals indicate high nonconformity. A common choice is the absolute
residual: 𝑅𝑖 = |𝑌𝑖 − 𝜇 |. The algorithm is exactly as before except for the change of definition
of the conformity score in Step 3. The only other change we will want to make is to our grid
of trial values, because now we are looking for both lower and upper bounds. Since we have
almost complete flexibility in the choice of trial values, we select trial values located near the
two endpoints: {91, ...,97,103, ...,110}. Again, we are using integer-valued trial values only
for expositional clarity.

Table 2 shows the calculations and results. At the lower end of the trial grid, trial value
𝑦𝑡𝑟𝑖𝑎𝑙 = 92 gives us an augmented mean of 𝜇𝑡𝑟𝑖𝑎𝑙 = 98.11. The 6th-largest residual is 5.75, vs
the trial value absolute residual of 𝑅𝑡𝑟𝑖𝑎𝑙 = 6.11, so this point lies outside the prediction set.
Trial value 𝑦𝑡𝑟𝑖𝑎𝑙 = 93 gives us an augmented mean of 𝜇𝑡𝑟𝑖𝑎𝑙 = 98.21, and now the 6th-largest
residual is 5.66. The absolute residual for this trial value is 5.21, so now the trial value is
inside the prediction set. The same is true of the other lower-end trial values 94, ...,97.
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At the upper end of the grid, for 𝑦𝑡𝑟𝑖𝑎𝑙 = 105 we get 𝜇𝑡𝑟𝑖𝑎𝑙 = 99.30, the 6th-largest residual is
6.33, 𝑅𝑡𝑟𝑖𝑎𝑙 = 5.70, so this trial value is again inside the prediction set. For the next trial value
𝑦𝑡𝑟𝑖𝑎𝑙 = 106, the re-trained mean is 𝜇𝑡𝑟𝑖𝑎𝑙 = 99.39, the 6th-largest residual is 6.42, 𝑅𝑡𝑟𝑖𝑎𝑙 = 6.61,
so 𝑦𝑡𝑟𝑖𝑎𝑙 = 106 is outside the prediction set, and the same is true of the other upper-end trial
values 107, ...,110. Hence our prediction interval is [93, 105] and the coverage guarantee is
again that the probability that the next observed observation 𝑌𝑛+1 is covered by the interval is
at least 50%.

2.3. Full conformal inference in practice

The key limitation to full-conformal inference is its computational cost. In our simple example,
we have to recalculate our prediction interval for every different trial value 𝑦 that we are
interested in. We have complete flexibility over the choice of grid points, so we can use as
fine a grid as we wish in the neighbourhoods of the prediction interval endpoints. We have to
retrain our learner for every gridpoint, but of course if our learner is just the sample mean this
is very easy even for large datasets. Using other learners (e.g., the sample median) or some
other nonconformity measure doesn’t change things.

Now extend to the case where we have some predictors (features) 𝑋 . The trial value is
now (𝑥, 𝑦), i.e., a hypothetical combination of a possible value for the outcome and a set
of possible values for the predictors. We train the learner 𝑓 (.) on the union of the observed
data (𝑋𝑖,𝑌𝑖), 𝑖 = 1, ..., 𝑛 and the trial value (𝑥, 𝑦). The point predictions for the observed data
are �̂�𝑛,(𝑥,𝑦) (𝑋𝑖), 𝑖 = 1, ..., 𝑛 and �̂�𝑛,(𝑥,𝑦) (𝑥). Everything else goes through as above starting with
defining the residuals using the point predictions. But now the computational cost of full
conformal prediction is clear. We have to train our learner 𝑓 (.) for every combination (𝑦, 𝑥)
we are interested in. In other words, if we have 𝑝 predictors 𝑋 , instead of a grid search
of trial values in one dimension on R, we have to do a grid search of trial values in 𝑝 + 1
dimensions on R𝑝+14.

This will be computationally very costly unless the 𝑝 is fairly small and/or we have a good
idea of what the grid of trial values should be composed of.

2.4. Split conformal example: One- and two-sided prediction intervals

This is where split conformal predictive inference rides in to the rescue. The algorithm for
split conformal looks at first glance rather different from full conformal, but in fact it is closely
related. The tradeoff is a computational cost saving in exchange for loss of flexiblity over the
grid of trial values. In effect, a portion of the dataset becomes the grid of trial values, and if
this is done, then the learner needs to be trained only once instead of for every grid point. The

4An alternative approach is to fix 𝑥 = 𝑋𝑛+1 and perform a grid search over Y. However we would still need
to repeat this procedure for each new 𝑋 and would thus not be practical if we wished to perform inference for
anything more than a small number of points.
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coverage guarantee is exactly the same as with full conformal prediction.

To illustrate, we extend our dataset to 20 observations, which we will split into two subsamples
of 10 observations each. The dataset is drawn from the same distribution as before (standard
normal 𝑁 (100,10)). Observations 𝑖 = 1, ...,10 are used for calibration and have the same
values the dataset used in the full conformal example. The 10 observations in the training
sample are not reported here but have sample mean 𝜇𝑡𝑟𝑎𝑖𝑛 = 102.77.

The split conformal algorithm is as follows.

Step 1: Split data into training D𝑡𝑟𝑎𝑖𝑛 and calibration D𝑐𝑎𝑙 sets.

Step 2: Calculate the mean 𝜇𝑡𝑟𝑎𝑖𝑛 on D𝑡𝑟𝑎𝑖𝑛.

Step 3: Using 𝜇𝑡𝑟𝑎𝑖𝑛 from Step 2, calculate the conformity score 𝑅𝑖 for each observation in the
calibration set D𝑐𝑎𝑙 , i.e., for observations 𝑖 = 1, ...,10.

Step 4: Calculate the rank of the conformity score for the residuals in the calibration set.

Step 5: Include 𝑌𝑖, 𝑖 = 1, ...,10 in the prediction interval if 𝑅𝑎𝑛𝑘 (𝑅𝑖) ≤ ⌈(1−𝛼) × (𝑛+1)⌉.

As with full conformal prediction, we use either the residual 𝑅𝑖 = 𝑌𝑖 − 𝜇 or the absolute
residual 𝑅𝑖 = |𝑌𝑖 − 𝜇 |, depending on whether we are constructing a one-sided or two-sided
interval. Also as in the full conformal example, (1−𝛼) × (𝑛+ 1) = 5.5 is a non-integer, so
we use the ceiling function ⌈.⌉ when constructing the interval, i.e., we are looking for the
6th-largest residual.

The example is presented in Table 3. The table contains the calculations for both the one-sided
and two-sided intervals, again with target coverage of 50%. The learner is the sample mean
function applied to the training data observations 𝑖 = 1, ...,10, which gives us 𝜇 = 102.77.
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In the first block we construct a one-sided interval. The 6th-largest residual in the calibration
set is −1.62, corresponding to observation 𝑖 = 2 (the second observation in the calibration set),
𝑌2 = 101.15. Hence our one-sided prediction set is 𝑌 ≤ 101.15.

The second block in the table shows the construction of the two-sided interval. We are now
using absolute residuals as our non-conformity score, and the 6th-largest absolute residual
in the calibration set is 8.24, corresponding to observation 𝑖 = 9 (the ninth observation in the
calibration set), 𝑌9 = 111.01. But since we are constructing a two-sided interval, we have to
examine all the observations in the calibration set with residuals that are smaller than this.
The smallest such 𝑌𝑖 in the calibration set with a residual satisfying 𝑅𝑖 ≤ 8.24 (smaller than
the 6th-largest residual) is the lower bound of our prediction interval; and the largest such 𝑌𝑖
in the calibration set with a residual satisfying 𝑅𝑖 ≤ 8.24 is the upper bound of our interval.
The table shows that these are observations 𝑌10 = 95.54 and 𝑌9 = 111.01, respectively, and so
our two-sided prediction with guaranteed coverage of ≥ 50% is [95.54, 111.01].
Why does this work? Because we are still respecting exchangeability. Conditional on the
training set D𝑡𝑟𝑎𝑖𝑛, the calibration set residuals 𝑅𝑖, 𝑖 ∈ D𝑐𝑎𝑙 and the residual 𝑅𝑛+1 for a new
observation 𝑌𝑛+1 are all exchangeable. And because the calibration data now come from the
same distribution as the training data (no researcher-selected trial value enters, as in full
conformal prediction), we don’t have to retrain for every observation in the calibration set.

Adding predictors and learners to this setup is very straightforward. In Step 2 of the algorithm,
we just use a learner 𝑓 (.) of our choice and train it on the observations (𝑋𝑖,𝑌𝑖) in the training
set D𝑡𝑟𝑎𝑖𝑛, giving us the trained learner �̂� (.) to use in Step 3. The training has to be done only
once, so this is computationally much faster than the full-conformal version.

2.5. Full vs. split conformal prediction: summary

Whereas the full conformal algorithm loops through every trial value and has to re-train the
learner in each loop, the split conformal algorithm trains the learner once on the training set
and then loops through every observation in the calibration set. The split conformal saving
in computation cost come from having to train the learner only once. The price for this is
twofold: first, setting aside the calibration set means the researcher loses a portion of the data
that could be used for training; and second, in effect the trial grid is given to the researcher
the calibration set given by the random split in the first step. But as long as the dataset is large
enough, these will not be significant problems, and split conformal prediction usually will be
preferable in practice to full conformal prediction.
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3. Full and Split Conformal Inference: A Formal Presentation

3.1. Notation

We now introduce notation for the general case that will be used throughout the rest of the
paper. We consider some dataset 𝐷 = {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1, where each 𝑌𝑖 ∈ Y is an outcome variable
and 𝑋𝑖 ∈ X is a corresponding vector of features (predictors). Unless stated otherwise, we
assume the sequence (𝑋𝑖,𝑌𝑖) for 𝑖 = 1, . . . , 𝑛 is an exchangeable sequence. We useA :D→F
to denote a selection procedure that uses a dataset to select some prediction function �̂� ∈ F .

The score function is notated by 𝑠(𝑥, 𝑦;𝐷), with the score given by 𝑅𝑖 := 𝑠(𝑋𝑖,𝑌𝑖;𝐷). A
prediction interval is produced by a function 𝐶 : X → {[𝑎, 𝑏] ⊆ R | 𝑎 ≤ 𝑏}. Additionally, we
will typically suppress the dependence on 𝐷 and write 𝑅𝑖 := 𝑠(𝑋𝑖,𝑌𝑖) to denote the conformity
score for the 𝑖-th observation.

3.2. The Conformal Score Function

A conformal score function 𝑠 : X×Y×D → R measures the nonconformity of a data point
(𝑥, 𝑦) with respect to the data-set 𝐷 ∈ D (Vladimir Vovk, Alexander Gammerman, and Shafer,
2005). The higher the score, the less “conforming” the data point is considered to be.

The choice of conformity score is flexible and can be tailored to specific problems, which we
will see in Section 5.3, for example. A common choice for regression problems is the absolute
residual:

𝑠(𝑥, 𝑦) = |𝑦− �̂� (𝑥) |

where �̂� (𝑥) is a prediction for 𝑦 given 𝑥, obtained from a fitted model. However, other choices
are possible and may be more suitable depending on the context. For instance, if we are
interested in constructing one-sided prediction intervals, we might use the signed residual:

𝑠(𝑥, 𝑦) = 𝑦− �̂� (𝑥)

In general, the only requirement for a conformity score is that larger scores should reflect
greater uncertainty or disagreement between our predictions and the observed outcomes.
This flexibility in choosing the conformity score is one of the key strengths of the conformal
prediction framework.

3.3. Full and Split Conformal Inference

We now formally define and generalize the full and split conformal inference algorithms and
discuss some of their key properties.
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In Full Conformal Prediction we consider a sequence of “trial values” for the outcome
variable 𝑌𝑛+1 associated with a new input 𝑋𝑛+1 = 𝑥. For each trial value 𝑦, we augment
the original dataset 𝐷 = {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1 with the hypothetical data point (𝑥, 𝑦), creating an
augmented dataset 𝐷 (𝑥,𝑦) = 𝐷 ∪ {(𝑥, 𝑦)}. We then train a new model on this augmented
dataset and compute the conformity score of (𝑥, 𝑦) with respect to this model. This process is
repeated for every trial value in a chosen set, effectively exploring the entire space of possible
outcomes.

Algorithm 1: Full Conformal Prediction Input:

• Data (𝑋𝑖,𝑌𝑖), 𝑖 = 1, . . . , 𝑛

• Target miscoverage level 𝛼 ∈ (0,1)

• Regression algorithm A

• A new input 𝑥

• A set of trial values Y𝑡𝑟𝑖𝑎𝑙

Output: Prediction set 𝐶 (𝑥) ⊆ Y
Procedure: Initialize an empty prediction set: 𝐶 (𝑥) ← ∅.
Then, for each trial value 𝑦 ∈ Y𝑡𝑟𝑖𝑎𝑙 :

Step 1: Augment the dataset with the trial point: 𝐷 (𝑥,𝑦)← {(𝑋1,𝑌1), . . . , (𝑋𝑛,𝑌𝑛), (𝑥, 𝑦)}.

Step 2: Train the regression algorithm A on the augmented dataset 𝐷 (𝑥,𝑦) to obtain the fitted model
�̂�(𝑥,𝑦) =A(𝐷 (𝑥,𝑦)).

Step 3: Calculate the conformity scores for all data points in the augmented set, including the trial
point: 𝑅𝑖,(𝑥,𝑦) = 𝑠(𝑋𝑖,𝑌𝑖) for 𝑖 = 1, ..., 𝑛 and 𝑅𝑛+1,(𝑥,𝑦) = 𝑠(𝑥, 𝑦) using the model �̂�(𝑥,𝑦) .

Step 4: Compute the rank of the trial value’s conformity score: Rank(𝑦) =∑𝑛+1
𝑖=1 ⊮{𝑅𝑖,(𝑥,𝑦) ≤ 𝑅𝑛+1,(𝑥,𝑦)}.

Step 5: If Rank(𝑦) ≤ ⌈(1−𝛼) (𝑛+1)⌉ then

• Add the trial value 𝑦 to the prediction set: 𝐶 (𝑥) ← 𝐶 (𝑥) ∪ {𝑦}.

Return the prediction set 𝐶 (𝑥).
An alternative but equivalent way to think of the set is through quantiles rather than ranks, in
which case we could write the set as

𝐶 (𝑥) = {𝑦 : 𝑅𝑦
𝑛+1 ≤ Quantile

(
𝑛+1∑︁
𝑖=1
𝛿𝑅𝑦

𝑖
; (1−𝛼) (𝑛+1)/𝑛

)
},
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where 𝛿𝑅𝑦

𝑖
represents a point mass at the point 𝑅𝑦

𝑖
.

The following theorem establishes the validity of the prediction set constructed by the full
conformal prediction algorithm:

THEOREM 1 (Full Conformal Prediction Coverage). If the data points (𝑋𝑖,𝑌𝑖), 𝑖 = 1, . . . , 𝑛
and (𝑋𝑛+1,𝑌𝑛+1) are exchangeable, and the prediction set 𝐶 (𝑥) is constructed as in Algorithm
2 for 𝑋𝑛+1 = 𝑥, then:

P(𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1)) ≥ 1−𝛼.

Proof (intuition): The key idea is that, under the exchangeability assumption, when we
augment the dataset with a trial value 𝑦 that is equal to the true outcome 𝑌𝑛+1, the augmented
dataset remains exchangeable. Consequently, the rank of the trial value’s conformity score is
uniformly distributed among the ranks of all data points in the augmented set. This implies
that the probability of the trial value’s score being among the ⌈(1−𝛼) (𝑛+1)⌉ smallest scores
is at least 1−𝛼. Therefore, the prediction set, which includes all trial values satisfying this
condition, will contain the true outcome 𝑌𝑛+1 with probability at least 1−𝛼.

The Split Conformal Prediction procedure, originally proposed by Papadopoulos et al.
(2002), proceeds as follows:

Algorithm 1: Split Conformal Prediction

Input:

• Data (𝑋𝑖,𝑌𝑖), 𝑖 = 1, . . . , 𝑛

• Target miscoverage level 𝛼 ∈ (0,1)

• Regression algorithm A

Output: Prediction interval 𝐶 (·)
Procedure:

Step 1: Randomly split the data into two disjoint sets Itrain and Ical of sizes 𝑛0 and 𝑛1, respectively,
such that 𝑛0 +𝑛1 = 𝑛.

Step 2: Train the regression algorithm A on Itrain to obtain the fitted model:

�̂� =A ({(𝑋𝑖,𝑌𝑖) : 𝑖 ∈ Itrain}) .

Step 3: Calculate the conformity scores for the calibration set:

𝑅𝑖 = 𝑠(𝑋𝑖,𝑌𝑖) for 𝑖 ∈ Ical.
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Step 4: Determine the threshold �̂�𝑛1 as the ⌈(1−𝛼) (𝑛1 + 1)⌉-th smallest value in {𝑅𝑖 : 𝑖 ∈ Ical}. In
other words, �̂�𝑛1 is the (1−𝛼) empirical quantile of the calibration scores, adjusted for finite
sample size.

Step 5: Construct the prediction interval for the new input 𝑥:

𝐶 (𝑥) = [ �̂�𝑛0 (𝑥) − �̂�𝑛1 , �̂�𝑛0 (𝑥) + �̂�𝑛1] .

Return the prediction interval 𝐶 (·).
The theoretical guarantee of split conformal prediction is given by the following theorem:

THEOREM 2 (Split Conformal Prediction Coverage (From Lei et al. (2018))). If the data
points (𝑋𝑖,𝑌𝑖), 𝑖 = 1, . . . , 𝑛 are exchangeable and 𝐶 is constructed as in Algorithm 1, then
for a new, independent data point (𝑋𝑛+1,𝑌𝑛+1) also exchangeable with the previous data, we
have:

P(𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1)) ≥ 1−𝛼.

Proof (intuition): Under the exchangeability assumption, the conformity score for the new
observation, 𝑅𝑛+1 = 𝑠(𝑋𝑛+1,𝑌𝑛+1), is exchangeable with the conformity scores in the calibra-
tion set. Therefore, the probability that 𝑅𝑛+1 is less than or equal to the ⌈(1−𝛼) (𝑛1 +1)⌉-th
smallest value in the calibration set is at least 1−𝛼. Since the prediction interval is constructed
such that it contains all points with a conformity score less than or equal to �̂�𝑛1 , the coverage
guarantee follows.

These steps are outlined in the Figure 1 for estimating a 75% prediction interval. In plot
A, we estimate the conditional mean of 𝑌 given 𝑋 with the function 𝜇(·) using the training
data. In plot B, we use the calibration data to compute the residuals (dotted lines). Plot C
plots a histogram of the absolute residuals and marks the 75th percentile 𝑞. Finally, in plot D,
we construct our prediction set by adding and subtracting 𝑞 from the estimated conditional
expectation.

The above theorems for split and full conformal inference imply:

• Distribution-free coverage guarantee: The coverage guarantee holds regardless of the
underlying distribution of (𝑌, 𝑋), providing sharp bounds on the coverage guarantees
under the exchangeability assumption.

• Finite-sample validity: The guarantee holds for any sample size 𝑛, not just asymptotically.

• Flexibility: The choice of the base regression algorithm A and the conformity score is
flexible. Indeed, even if the estimator is severely biased or a poor predictor, full or split
conformal prediction will still produce valid predictive confidence intervals.

Under the further mild assumption that the distribution of the residuals is continuous, we get
the following sharp bound
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A. Estimate prediction function on training set B. Calculate residuals on calibration set

C. Calculate (1−𝛼) quantile of residuals D. Construct Prediction Interval

FIGURE 1. Split Conformal Prediction Steps

Theorem 2 (Cont.) (Lei et al., 2018) Assuming the residuals 𝑅𝑖, 𝑖 ∈ I𝑐𝑎𝑙 have a continuous
joint distribution, then

P(𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1)) ≤ 1−𝛼+ 2
𝑛+2

For split conformal inference, splitting the data equally between the training calibration set is
unnecessary. We may choose different size sets if we want to trade off better estimation of the
quantile of errors versus better estimation of the trained estimator. The choice of split will
depend on the context of the situation and researcher discretion.

4. Extensions

One benefit of split conformal inference is that we only require a single data split and
estimation of the model once. However, we sacrifice statistical efficiency due to using less
data to estimate both the prediction function and the distribution of the scores. Full conformal
prediction, on the other hand, avoids data splitting and fully uses the available data for both
estimation and inference. But it is very computationally intensive, as we have to re-estimate
the model many times, either for each new 𝑋 we wish to perform inference on, or for a whole
grid across the domain of X×Y.
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Statistical efficiency

Computational efficiency

SCP CV+ Jackknife+ Full conformal prediction

In the following sections, we discuss alternative procedures to better balance the trade-off
between computational efficiency and statistical efficiency. These are the Jackknife+ and CV+
algorithms.

4.1. The Jackknife

A first approach might be to use the jackknife method to estimate the residuals for each point
out of sample. The idea would be to use the leave-one-out (LOO) residual to estimate the
prediction interval and the resulting distribution of the score function.

FIGURE 2. Viualisation of the jackknife procedure. Each row represents the data-set with the
leave-one-out observation highlighted in blue.

The algorithm is given by:

For each 𝑖:

• 𝐷−𝑖 = 𝐷 \ (𝑋𝑖,𝑌𝑖)

• Train �̂�(−𝑖) =A(𝐷−𝑖)

• Estimate the score for 𝑖: 𝑅𝑖 = 𝑠(−𝑖) (𝑋𝑖,𝑌𝑖)

We would then construct our interval as

𝐶𝐽𝐾 (𝑋𝑛+1) = [ �̂� (𝑋𝑛+1) ± 𝑞1−𝛼 ({𝑅𝑖})]

similar to the approach used in split conformal prediction. However, this method does not
provide a specific coverage guarantee. Each �̂�(−𝑖) is trained on a dataset that omits a single
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data point. If the removal of that single point leads to a substantially different model, then
the estimated residuals (and consequently the estimated quantiles 𝑞1−𝛼) may not accurately
reflect the true error distribution of the final model �̂� trained on the full dataset. Consequently,
we can no longer construct a valid prediction set with a coverage guarantee (Lei et al., 2018).

However, with a small modification of the underlying algorithm, and how we treat the
quantiles, we are able to produce a valid interval.

4.2. Jackknife+

The jackknife+ algorithm (Barber et al., 2021) accounts for variability in the fitted regression
function and provides coverage guarantees only under the exchangeability assumption. Before
continuing, we need to introduce additional notation as the jackkife+ algorithm treats the
quantiles slightly differently from the previous methods. For any values 𝑣𝑖 ∈ R indexed by
𝑖 = 1, . . . , 𝑛, let

𝑞+𝑛,𝛼{𝑣𝑖} = ⌈(1−𝛼) (𝑛+1)⌉-th smallest quantile of {𝑣𝑖}
and

𝑞−𝑛,𝛼{𝑣𝑖} = ⌊𝛼(𝑛+1)⌋-th smallest quantile of {𝑣𝑖}.

Note that the jackknife conformal prediction interval described above can be written as
𝐶
𝑗𝑎𝑐𝑘𝑘𝑛𝑖 𝑓 𝑒
𝑛,𝛼 (𝑋𝑛+1) = �̂�𝑛 (𝑋𝑛+1) ± 𝑞+𝑛,𝛼{𝑅𝐿𝑂𝑂𝑖

}, where 𝑅𝐿𝑂𝑂
𝑖

= 𝑠(−𝑖) (𝑋𝑖,𝑌𝑖) is the leave-one-out
conformity score.

The jackknife+ algorithm works by recentring our interval on the leave-one-out prediction for
𝑋𝑛+1. Our prediction set is then given by:

𝐶
𝑗𝑎𝑐𝑘𝑘𝑛𝑖 𝑓 𝑒+
𝑛,𝛼 (𝑋𝑛+1) = [𝑞−𝑛,𝛼{ �̂�(−𝑖) (𝑋𝑛+1) −𝑅𝐿𝑂𝑂𝑖 }, 𝑞+𝑛,𝛼{ �̂�(−𝑖) (𝑋𝑛+1) +𝑅𝐿𝑂𝑂𝑖 }] .

If �̂�(−𝑖) and �̂�𝑛 are similar, then the jackknife and jackknife+ algorithms will produce very
similar confidence sets. However, when this is not the case, the prediction sets may be quite
different, and the jackknife algorithm may not produce a prediction interval with desirable
coverage properties.

Interestingly, the coverage guarantee of the jackknife+ algorithm is at the level 1−2𝛼 (rather
than 1−𝛼)5 If we want to be certain we get a nominal coverage rate of 1−𝛼, we can use the
jackknife-minimax (Barber et al., 2021) method, where the prediction interval is given by

𝐶
𝑗𝑎𝑐𝑘𝑘𝑛𝑖 𝑓 𝑒−𝑚𝑖𝑛𝑚𝑎𝑥
𝑛,𝛼 (𝑋𝑛+1) = [min

𝑖
�̂�(−𝑖) (𝑋𝑛+1) − 𝑞+𝑛,𝛼{𝑅𝐿𝑂𝑂𝑖 },

max
𝑖
�̂�(−𝑖) (𝑋𝑛+1) + 𝑞+𝑛,𝛼{𝑅𝐿𝑂𝑂𝑖 }] .

5Although, it will often be close to 1−𝛼 in practice.
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The jackknife-minimax method is more conservative than the jackknife+ method and will
always lead to a prediction set that is weakly larger than the size of the set produced by the
jackknife algorithm.

4.2.1. Interpreting the interval

The Jackknife+ algorithm is unique in that the interval is no longer symmetric around the point
prediction. There is even no guarantee that the prediction will lie within the confidence interval
in extreme cases, which complicates interpreting the interval as an uncertainty estimate around
our prediction. However, we can interpret this interval as an uncertainty estimate around the
median �̂�(−𝑖) from the ensemble of predictions (Angelopoulos, Barber, and Bates, 2024).

4.2.2. Why is jackknife+ coverage 1−2𝛼?

The fact that the coverage guarantee now holds for 1− 2𝛼 is an interesting property when
performing inference or statistical tests across multiple splits of data, and can also be seen in
traditional hypothesis testing settings (e.g. see C. J. DiCiccio, T. J. DiCiccio, and J. P. Romano
(2020)).

The reason for the 2𝛼 factor is due to potential inconsistencies across the models when trained
on different subsets of the data. A transitive ranking of numbers implies that if 𝐴 > 𝐵 and
𝐵 > 𝐶, then 𝐴 > 𝐶. However, the jackknife+ (and more generally, cross-conformal methods)
violate transitivity as it constructs its intervals via looking at a collection of models, each
trained on a slightly different subset of the data. When we compare residuals across these
different models, transitivity can break down. For example,

• Residual A (from model 1)> Residual B (from model 2)

• Residual B (from model 2) > Residual C (from model 3)

• Residual C (from model 3) > Residual A (from model 2)

Recall how standard conformal prediction achieves 1−𝛼 coverage. With a single model, we:

Step 1: Calculate residuals 𝑅𝑖 = |𝑌𝑖 − �̂� (𝑋𝑖) |

Step 2: Find a threshold 𝑞 where 𝑃(𝑅𝑖 > 𝑞) ≤ 𝛼

Step 3: Construct interval �̂� (𝑋𝑛+1) ± 𝑞

This works because we have a single, consistent ranking of residuals - if a point is in the top 𝛼
of largest residuals, it’s equally “extreme” for both the upper and lower bounds of our interval.

Jackknife+ operates differently. For each point 𝑖:
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Step 1: We train a model without that point: �̂�(−𝑖)

Step 2: Calculate its LOO residual: 𝑅𝐿𝑂𝑂
𝑖

= |𝑌𝑖 − �̂�(−𝑖) (𝑋𝑖) |

Step 3: Construct intervals using quantiles of { �̂�(−𝑖) (𝑋𝑛+1) ±𝑅𝐿𝑂𝑂𝑖
}

The difference is that we’re now using different models to determine the upper and lower
bounds. This means:

• Point A might have a large residual under model 1 but small under model 2

• Point B might have a large residual under model 2 but small under model 1

In the worst case:

• The 𝛼 fraction of points determining the upper bound could be completely different from

• The 𝛼 fraction of points determining the lower bound

...which leads to a total of 2𝛼 fraction of points potentially falling outside the interval.

This is why we can only guarantee 1−2𝛼 coverage, though in practice the coverage is often
much closer to 1−𝛼 as such extreme reorderings are rare.

This also provides intuition for why the minmax version of Jackknife+ covers 1−𝛼 as we
are restoring transitivity by using the same threshold of the residuals for the upper and lower
bounds.

4.3. CV+

CV+ or “cross-validation-plus” is very similar to the jackknife+ algorithm but works on a
block structure rather than leaving a single observation out (Barber et al., 2021).

To start, split the training set into 𝐾 disjoint subsets 𝑆1, . . . , 𝑆𝐾 , each with size 𝑚 = 𝑛
𝑘
.6 Denote

by �̂�(−𝑠𝑘) the prediction function estimated using the dataset excluding 𝑆𝑘 for 𝑘 = 1, . . . , 𝐾.
The out-of-fold conformity score is given by

𝑅𝐶𝑉𝑖 =| 𝑌𝑖 − �̂�(−𝑆𝑘 (𝑖) ) (𝑋𝑖) |,

where 𝑘 (𝑖) identifies the set in which observation 𝑖 belongs. The 𝐶𝑉+ prediction interval is
then defined as

𝐶𝐶𝑉+𝑛,𝛼 (𝑋𝑛+1) = [𝑞−𝑛,𝛼{ �̂�(−𝑆𝑘 (𝑖) ) (𝑋𝑛+1) −𝑅
𝐶𝑉
𝑖 }, 𝑞+𝑛,𝛼{ �̂�(−𝑆𝑘 (𝑖) ) (𝑋𝑛+1) +𝑅

𝐶𝑉
𝑖 }] .

We can see that the CV+ algorithm is the same as the jackknife+ algorithm when 𝐾 = 𝑛.
6We assume without loss of generality that 𝑚 is an integer.
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4.4. Summary

We summarise in Table 4 the guarantees of the methods discussed so far:

Method Coverage Guarantee Typical Coverage

Naive None < 1−𝛼
Split 1−𝛼 ≈ 1−𝛼
Full 1−𝛼 ≈ 1−𝛼 or > 1−𝛼 if �̂� (𝑥) is a poor predictor
Jackknife None ≈ 1−𝛼 or < 1−𝛼 if �̂� (𝑥) is unstable
Jackknife+ 1−2𝛼 ≈ 1−𝛼
Jackknife-minmax 1−𝛼 > 1−𝛼
K-fold CV+ 1−2𝛼 ⪆ 1−𝛼

TABLE 4. Summary of coverage guarantees and typical coverage for different methods.
Adapted from Barber et al. (2021)

5. Conditional Coverage

One key consideration in conformal inference under the assumption of exchangeability is
conditional validity. The methods discussed so far primarily provide marginal coverage
guarantees in finite samples — that is, on average, the prediction interval is expected to
contain the true outcome with probability 1−𝛼 across the joint distribution of X×Y.

Formally, we say a prediction set set 𝐶 satisfies distribution-free conditional covearge at
significance level 1−𝛼 if

P𝑃{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1) | 𝑋𝑛+1 = 𝑥} ≥ 1−𝛼

for all distributions 𝑃 and all measurable 𝑥 ∈ X. This is a much stronger requirement than
marginal coverage, as it demands that the coverage probability holds for each specific value
of the predictors, not just on average.

5.1. Impossibility Results and Fundamental Limitations

To reflect on what we have discussed above, if our new data point (𝑋𝑛+1,𝑌𝑛+1) is exchange-
able with our data-set 𝐷, then the rank of 𝑅𝑛+1 among the points {𝑅𝑖}𝑖∈𝐷

⋃{𝑅𝑛+1} will be
distributed uniformly, thus providing us with marginal coverage.

To understand why this approach does not translate to conditional coverage, consider how
we use the empirical distribution of the conformity scores to set our thresholds, which
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we can denote by 𝐹 (𝑅𝑖). While we construct our prediction intervals using the marginal
distribution of residuals 𝐹 (𝑅𝑖), what is relevant for conditional coverage is the conditional
CDF 𝐹 (𝑅𝑖 | 𝑋𝑖 = 𝑥). When these distributions differ, using quantiles from 𝐹 (𝑅𝑖) to set
our thresholds will result in inconsistent coverage rates, even though marginal coverage is
maintained.

In fact, if 𝐹 (𝑅𝑖 | 𝑋𝑖 = 𝑥) = 𝐹 (𝑅𝑖) for all 𝑥 – that is, the distribution of the conformity score
is independent of 𝑋𝑖 – it would be a sufficient condition for perfect conditional coverage.
However, this independence condition is strong and rarely holds in practice.

This is formalized in the following impossibility result. Note that in the proposition below,
𝐶 refers to any distribution free prediction set that satisfies conditional coverage, not only
intervals from conformal prediction.

PROPOSITION 1 (From Lei et al. (2018) and Foygel Barber et al. (2021)). Suppose a pre-
diction set 𝐶 (·) satisfies the distribution-free conditonal coverage property. Then for all
distributions 𝑃, we have

E[length(𝐶 (𝑥))] =∞,
at almost all points 𝑥 aside from the atoms of 𝑃𝑋7. See A2 in (Lei and Wasserman, 2014) for
the full proof.

Proposition 1 tells us that any method claiming to provide exact conditional coverage must nec-
essarily produce intervals with infinite length in expectations, making the coverage guarantee
useless in practice.

While we cannot guarantee point-wise coverage for 𝑥 ∈ X, we can find some middle ground
between the two extremes of marginal coverage and conditional coverage, known as approx-
imate conditional coverage (Foygel Barber et al., 2021). The first two methods discussed
(normalized conformal prediction and conformal quantile regression) produce adaptive predic-
tion sets (sets which vary in length) but don’t provide any guarantees of conditional coverage
in finite samples, but never nevertheless improve measures of conditional coverage in practice.
However, the third method (localized conformal prediction) does come with approximate
conditional coverage guarantees.

5.2. Normalized Conformal Prediction

One straightforward way to create adaptive prediction intervals that can improve conditional
coverage and better reflect local uncertainty is to scale the conformity scores by a measure
of how “challenging” the test point is to predict. Normalized conformal prediction adjusts
the width of the prediction intervals based on the local difficulty of the prediction task
(Papadopoulos, Alex Gammerman, and Volodya Vovk, 2008).

7Atoms are points of a distribution with positive probability mass.
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The key idea is to modify our conformity score by incorporating a local scaling factor �̂�(𝑋𝑖):

𝑅𝑖 =
𝑠(𝑋𝑖,𝑌𝑖)
�̂�(𝑋𝑖)

.

The scaling factor can take various forms, including:

• Estimated conditional standard deviation:

�̂�(𝑋𝑖) =
√︃
Ê[(𝑌 − 𝜇(𝑋))2 | 𝑋 = 𝑋𝑖]

• Model-based uncertainty:

�̂�(𝑋𝑖) =
√︃
𝑉 (𝜇(𝑋𝑖)),

where 𝑉 (·) estimates prediction variance.

• Local variance estimation:

�̂�(𝑋𝑖) =

√︄∑
𝑗∈N𝑘 (𝑖) (𝑌 𝑗 −𝑌N𝑘 (𝑖))2

𝑘
,

where N𝑘 (𝑖) denotes the 𝑘-nearest neighbors of 𝑋𝑖.

For a new observation 𝑋𝑛+1, the prediction interval is:

𝐶 (𝑋𝑛+1) = [𝜇𝑛0 (𝑋𝑛+1) − 𝑞�̂�(𝑋𝑛+1), 𝜇𝑛0 (𝑋𝑛+1) + 𝑞�̂�(𝑋𝑛+1)]

where 𝑞 is the (1−𝛼) (1+1/𝑛) quantile of the normalized residuals {𝑅𝑖}𝑛𝑖=1.

While this approach doesn’t guarantee conditional coverage, it often works well in practice,
particularly when the scaling factor accurately captures the true variation in prediction
difficulty across the feature space.

5.2.1. Example

Consider the simple regression model

𝑌𝑖 = 𝛽𝑋𝑖 + 𝑋𝑖𝑒𝑖
where 𝑋𝑖 ∼𝑈 (0,5) and 𝑒𝑖 ∼ 𝑁 (0,1) , which is plotted in the Figure 3. As we can see, the
spread of the data points increase as 𝑋 increases. Using the split conformal inference algorithm
(left diagram), the prediction intervals are constant along the domain of 𝑋 , not capturing the
heteroskedasticity in the error term. This results in areas with with perfect coverage, and areas
with less than 95% coverage.

In contrast, the figure on the right illustrates the application of normalized conformal predic-
tion, which adjusts the prediction intervals based on the local difficulty of the prediction task.
Here, the conformity scores are modified by a scaling factor �̂�(𝑋𝑖), defined as an estimate of
the conditional standard deviation of the error term.
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FIGURE 3. Plots of split conformal inference (left) and normalized conformal inference (right)
for a DGP with a heteroskedastic error term.

5.3. Conformal Quantile Regression

Conformal quantile regression (CQR) provides a direct approach to handling heterogeneity in
the conditional distribution of 𝑌 | 𝑋 through a modification of the score function (Y. Romano,
Patterson, and Candes, 2019).

Let 𝜏low = 𝛼/2 and 𝜏high = 1−𝛼/2. The method proceeds in two steps:

Step 1: Estimate conditional quantile functions 𝑞𝜏low (𝑥) and 𝑞𝜏high (𝑥) using any consistent quantile
regression method. Common specifications include:

• Linear quantile regression:

𝑞𝜏 (𝑥) = 𝑥′𝛽𝜏 = argmin
𝛽

𝑛∑︁
𝑖=1

𝜌𝜏 (𝑌𝑖 − 𝑥′𝑖𝛽)

where 𝜌𝜏 (𝑢) = 𝑢(𝜏−⊮{𝑢 < 0}).
• Nonparametric quantile regression:

𝑞𝜏 (𝑥) = argmin
𝑞∈F

𝑛∑︁
𝑖=1

𝜌𝜏 (𝑌𝑖 − 𝑞(𝑥𝑖))
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where F is a flexible function class (e.g., neural networks, random forests).

Step 2: Construct conformity scores for each observation in the calibration set:

𝐸 low
𝑖 = 𝑌𝑖 − 𝑞𝜏low (𝑋𝑖)

𝐸
high
𝑖

= 𝑞𝜏high (𝑋𝑖) −𝑌𝑖

The final prediction interval for a new point 𝑋𝑛+1 is:

𝐶 (𝑋𝑛+1) = [𝑞𝜏low (𝑋𝑛+1) −𝑄1−𝛼 (𝐸 low), 𝑞𝜏high (𝑋𝑛+1) +𝑄1−𝛼 (𝐸high)]

where 𝑄1−𝛼 (·) is the (1−𝛼) (1+1/𝑛) empirical quantile.

Several theoretical properties are worth noting:

• The method provides valid marginal coverage regardless of the consistency of the quantile
estimates:

P(𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1)) ≥ 1−𝛼

• Under correct specification of the conditional quantiles, the intervals are asymptotically
optimal in terms of expected length:

lim
𝑛→∞

E[length(𝐶 (𝑋))] = E[𝑞𝜏high (𝑋) − 𝑞𝜏low (𝑋)]

• The method is robust to heteroskedasticity and other forms of conditional heterogeneity
without requiring explicit modeling of the conditional variance.

Figure 4 outlines the procedure of CQR for an 𝛼 = 0.25. In plot A, using the training data we
estimate the conditional expectation �̂� along with the 12.50th and 87.50th quantiles using
quantile regression. Then using the calibration data, we calculate the residuals according to
the CQR score function. Plot C plots a histrogram of the conformity scores and marks the
75th percentile 𝑞. Finally, we construct the interval in plot 6 by adding 𝑞 to the upper quantile,
and substracting 𝑞 from the lower quantile.

5.4. Weighted Conformal Prediction

Weighted conformal prediction offers a way to improve conditional coverage by prioritising
local information through a weighting scheme, aiming to improve conditional coverage. The
idea is to assign higher weights to observations based on their similarity to the test point of
interest. This localization is achieved using a kernel function 𝐻 :X×X→ R≥0 that quantifies
the proximity between feature vectors. A common choice for 𝐻 is the Gaussian kernel:
𝐻 (𝑥, 𝑥′) = exp(−∥𝑥− 𝑥′∥2/2ℎ2), where ℎ is a bandwidth parameter controlling the extent of
localization.
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A. Estimate prediction and quantile functions on train-
ing set B. Calculate residuals on calibration set

C. Calculate (1−𝛼) quantile of residuals D. Construct Prediction Interval

FIGURE 4. Steps to implement Conformal Quantile Regression

5.4.1. Localized Conformal Prediction

A naive approach would be to construct the prediction set as

𝐶 (𝑋𝑛+1) =
{
𝑦 ∈ Y : 𝑅𝑦

𝑛+1 ≤ Quantile

(
𝑛+1∑︁
𝑖=1
𝑤𝑖𝛿𝑅𝑦

𝑖
;1−𝛼

)}
where 𝑤𝑖 =

𝐻 (𝑋𝑖 ,𝑋𝑛+1)∑𝑛+1
𝑗=1 𝐻 (𝑋 𝑗 ,𝑋𝑛+1)

are weights based on the proximity to the test point 𝑋𝑛+1 and 𝑅𝑦
𝑖

are the conformity scores. However, this does not guarantee valid coverage.

To address this, localized conformal prediction uses a recalibration step that ensures valid
marginal coverage while maintaining some degree of local adaptivity (Guan, 2023). Instead
of directly using the weighted empirical quantile, it adapts the threshold based on a weighted
quantile of modified conformity scores.

Algorithm for Localized Conformal Prediction:

Input: Training data {(𝑋1,𝑌1), . . . , (𝑋𝑛,𝑌𝑛)}, test point 𝑋𝑛+1, significance level 𝛼, grid of trial
values 𝑌𝑔𝑟𝑖𝑑 , and localization kernel 𝐻.

Steps:

For each 𝑦 ∈ 𝑌𝑔𝑟𝑖𝑑:
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Step 1: Compute Conformity Scores and Weights:

𝑅
𝑦

𝑖
= 𝑠𝑦 (𝑋𝑖,𝑌𝑖) for 𝑖 = 1, . . . , 𝑛+1

𝑤𝑖, 𝑗 = 𝐻 (𝑋 𝑗 , 𝑋𝑖)/
𝑛+1∑︁
𝑗 ′=1

𝐻 (𝑋 𝑗 ′ , 𝑋𝑖) for 𝑖, 𝑗 = 1, . . . , 𝑛+1

for 𝑖 = 1, . . . , 𝑛+1.

Step 2: For each 𝑖, compute weighted conformity scores:

�̃�
𝑦

𝑖
=

𝑛+1∑︁
𝑗=1
𝑤𝑖, 𝑗⊮{𝑅𝑦𝑗 < 𝑅

𝑦

𝑖
}

Step 3: Calculate the quantile of the weighted conformity scores:

𝑞𝑦 = Quantile(�̃�𝑦1 , . . . , �̃�
𝑦

𝑛+1;1−𝛼)

Return the prediction set:

𝐶 (𝑋𝑛+1) = {𝑦 ∈ Y : 𝑅𝑦
𝑛+1 ≤ 𝑞

𝑦}

The difference from the naive approach is using the data-dependent threshold 𝑞𝑦 instead of a
fixed 1−𝛼 quantile.

5.4.2. Theoretical Considerations and Randomly-Localized Conformal Prediction

While localized conformal prediction offers improved conditional coverage in practice, we
can only guarantee marginal coverage. A variation called randomly-localized conformal
prediction provides a way forward in guaranteeing approximate conditional coverage (Hore
and Barber, 2024).

Randomly-Localized Conformal Prediction:

This method introduces a randomization step, sampling a point �̃�𝑛+1 from a distribution
centered around 𝑋𝑛+1 (using the kernel 𝐻 as the density8). Weights and quantiles are then
calculated based on this sampled point.

Algorithm:

Inputs: Training data {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1, test point 𝑋𝑛+1, significance level 𝛼, localization kernel
𝐻, and score function 𝑠.

Steps:

Sample �̃�𝑛+1 from a distribution with density 𝐻 (𝑋𝑛+1, ·).
Then, for each 𝑦 ∈ 𝑌𝑔𝑟𝑖𝑑:

8This requires that our kernel function satisfies
∫
X 𝐻 (𝑥, 𝑥

′)𝑑𝜈(𝑥′) = 1 with respect to some density measure 𝜈
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Step 1: Compute Scores and Weights:

𝑅
𝑦

𝑖
= 𝑠𝑦 (𝑋𝑖,𝑌𝑖)

𝑤𝑖 = 𝐻 (𝑋𝑖, �̃�𝑛+1)/
𝑛+1∑︁
𝑗=1
𝐻 (𝑋 𝑗 , �̃�𝑛+1)

for 𝑖 = 1, . . . , 𝑛+1.

Step 2: Calculate the 1−𝛼 quantile of the weighted conformity scores:

𝑞𝑦 = Quantile

(
𝑛+1∑︁
𝑖=1
𝑤𝑖𝛿𝑅𝑦

𝑖
;1−𝛼

)
Return the prediction set:

𝐶 (𝑋𝑛+1) = {𝑦 ∈ Y : 𝑅𝑦
𝑛+1 ≤ 𝑞

𝑦}

Theoretical Guarantee:

The randomization in this approach provides us with the following theoretical result:

THEOREM 3. Suppose {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1 are i.i.d. samples and the score function 𝑠 is symmetric.
Then, for any test point 𝑋𝑛+1, the prediction set 𝐶 (𝑋𝑛+1) produced by the randomly-localized
conformal prediction method satisfies

𝑃(𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1) | �̃�𝑛+1) ≥ 1−𝛼 almost surely.

Interpretation:

This theorem provides a conditional coverage guarantee, but conditional on the randomly
sampled point �̃�𝑛+1, not the test point 𝑋𝑛+1 itself. This can be interpreted as a guarantee
that holds "near" 𝑋𝑛+1 in a probabilistic sense, as �̃�𝑛+1 is drawn from a distribution centered
around it. See Angelopoulos, Barber, and Bates (2024) for a proof of this proposition.

6. Conclusion

Conformal inference is a powerful framework for constructing prediction intervals with
guaranteed coverage in finite samples. We have demonstrated the basic principles of full
and split conformal prediction, highlighting the key assumption of exchangeability and
illustrating how to construct one-sided and two-sided prediction intervals. We have also
explored extensions such as the Jackknife+ and CV+ algorithms, which offer a better balance
between computational and statistical efficiency. Finally, we examined the issue of conditional
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coverage, presenting methods that aim to improve conditional coverage in practice, such as
normalized conformal prediction, conformal quantile regression, and weighted conformal
prediction.

We have touched on only a fraction of this rapidly developing literature. There are many
areas we haven’t discussed where conformal inference can be used, such as in settings where
exchangeability fails, classification, or traditional hypothesis testing and inference.

How limiting the exchangeability assumption is will depend on the context. For example,
exchangeability rarely holds in a time-series setting, where the objective is to construct a
forecast interval. Seminal works covering conformal inference in a time-series setting include
Xu and Xie (2023), Chernozhukov, Wüthrich, and Yinchu (2018), and Xu and Xie (2021).
Other areas where conformal inference is being actively developed include outlier detection
(Bates et al., 2023), covariate and distribution shift (Tibshirani et al., 2019; Gibbs and Candes,
2021), risk control (Bates et al., 2021), conformal predictive distributions (Vladimir Vovk
et al., 2019; Vladimir Vovk et al., 2018), Mondrian conformal prediction (Boström, Johansson,
and Löfström, 2021), and length optimization (Kiyani, Pappas, and Hassani, 2024) among
others. These are just examples of a large and rapidly-growing literature.

Software. There are a number of good software packages that can implement the methods
discussed. In Python, the MAPIE package9(Cordier et al., 2023) and the crepes pack-
age10(Boström, 2022) provide comprehensive tools for conformal prediction. For time series
forecasting, the Nixtla11suite of packages (Garza et al., 2022) offers implementations of confor-
mal inference methods tailored to time series data. In Julia, the ConformalPrediction.jl
package12 provides a flexible and efficient framework for conformal inference. In R, there
are several packages focusing on specific methods. Two worth noting in particular are
AdaptiveConformal13 (Susmann, Chambaz, and Josse, 2023) and ConformalForecast14

(Wang and Hyndman, 2024).

The distribution-free nature and finite-sample validity of conformal inference make it a
potentially attractive tool for empirical research in economics. We hope that this paper can
serve as a useful starting point for economists interested in exploring and applying these
methods in their own work. As the field continues to evolve, we anticipate that conformal
inference will play an increasingly important role in empirical economic research, providing
a robust and flexible framework for uncertainty quantification and prediction.

9https://mapie.readthedocs.io/en/stable/
10https://github.com/henrikbostrom/crepes
11https://nixtla.github.io/nixtla/
12https://github.com/JuliaTrustworthyAI/ConformalPrediction.jl
13https://github.com/herbps10/AdaptiveConformal
14https://github.com/xqnwang/conformalForecast
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